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ABSTRACT

This study aims to investigate and find a suitable model for forecasting the leptospirosis
incidence in the Philippines. The Box-Jenkins approach was utilized in the development of an
appropriate model. The dataset was retrieved from the Epidemiology Bureau of the Department
of Health containing the weekly number of leptospirosis cases in the Philippines from 2016 to
2018. This dataset was analyzed using the R software. The original series is nonstationary with
indications of nonconstant variance. Box-Cox transformation and ordinary differencing were
performed on the series. The transformed series was analyzed and the results show that
ARIMA(0,1,0) or the random walk model is the most appropriate model for forecasting
leptospirosis incidence. The residuals and forecast errors of the fitted model behave like a white
noise process. The fitted model may be used for forecasting the future number of leptospirosis
cases in the Philippines.

Keywords: forecasting, Box-Jenkins method, leptospirosis, randow walk, epidemiology,
Philippines.

INTRODUCTION

Leptospirosis is a bacterial disease that affects humans and animals. It is caused by bacteria of
the genus Leptospira. Leptospira is a spiral-shaped Gram-negative spirochete with internal
flagella, which enters the host through mucosa and broken skin. Without treatment,
leptospirosis can lead to kidney damage, meningitis (inflammation of the membrane around
the brain and spinal cord), liver failure, respiratory distress, and even death (Centers for Disease
Control and Prevention, 2017).

Leptospirosis are found throughout the world, but prevalence is higher in tropical regions with
high rain fall (Haake & Levett 2015). Leptospirosis is a major public health concern,
particularly in developing countries with limited economic resources. However, recent reports
indicated its emergence as an important health risk in developed and developing countries
including European countries, especially among individuals participating in water sport
activities (Dupouey et al., 2014; Haake et al., 2002).

Very little is currently known regarding the true incidence of leptospirosis. It is estimated that
0.1to 1 per 100,000 people living in temperate climates are affected each year, with the number
increasing to 10 or more per 100,000 people living in tropical climates. If there is an epidemic,
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the incidence can soar to 100 or more per 100,000 people (World Health Organization, 2018).
In the Philippines, leptospirosis incidence tend to be frequent in flood-prone areas of urban
setting such as Metro Manila. From 1998 to 2001, about 70% of 1200 suspected leptospirosis
patients in Philippines were tested positive for the disease. The average age of patients was 32
years old. Around 87% of the cases were males and 70% were outdoor workers. Case fatality
rate was found to be 12 to 14% (Villanueva et al., 2007).

In the Philippines, a total of 2,495 leptospirosis cases were reported nationwide in 2017. This
is 49.1% higher compared to 1,673 cases in 2016. Most of the cases were from the National
Capital Region (NCR), Region VI, Region I, Region 11l and Region Il (Department of Health,
2017). In response to this problem, the Department of Health coordinated with the College of
Public Health (CPH) of the University of the Philippines and employed preventions called
Leptospirosis Control (LepCon). They have conducted seminars and lectures in every
barangays in Quezon City for preventions and disease planning management. In addition, DOH
visits various elementary schools and conducts nationwide advocacy activities, lectures, and
awareness programs on leptospirosis.

Over the past years, several studies have been conducted on leptospirosis incidence. The Box-
Jenkins method is one of the usual techniques used in forecasting leptospirosis incidence. This
method is commonly used because of its applicability on seasonal time series. Seasonal
Autoregressive Integrated Moving Average (SARIMA) models have been used in different
studies (Chadsuthi et al., 2012; Gnanapragasam, 2017; Phrom, 2012) but there are also
instances where the Autoregressive Integrated Moving Average (ARIMA) model was utilized
(Ap, 2015).

This study aims to investigate and find a suitable ARIMA model for forecasting Leptospirosis
incidence in the Philippines. The model shall be developed using the Box-Jenkins approach.

Box-Jenkins Method

The Box-Jenkins approach is a systematic method of time series model development that
involves the stages of model identification, parameter estimation, and diagnostic checking. The
models that are presented in the succeeding sections were taken from the books of Adhikari
and Agrawal (2009) and Montgomery, Jennings and Kulachi (2008).

Autoregressive models are as their name suggests-regressions on themselves. The future value
of a variable is assumed to be a linear combination of p past observations and a random error
together with a constant term. An autoregressive model of order p, denoted by AR(p), is given

by

Ve = Cc+

l

PiYe-i + €

p
1)

where y, and e, are respectively the actual value and random error (or random shock) at time
period t, ¢; (i = 1,2,..,p) are model parameters and c is a constant. The random shock is
assumed to be a white noise process.
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If the future value of a variable is a linear combination of present and past random shocks, we
have what is called a moving average. The moving average model of order g, denoted by
MA(q), is given by

q
Vi =,u+zelet_l +€t
=1

)

where u is the mean of the series, 6; (j = 1,2, ... q) are the model parameters.

If we assume that the series is partly autoregressive and partly moving average, we obtain a
quite general time series model. An autoregressive moving average model of order p and g,
denoted by ARMA(p, q) is given by

14 q
Ye=Cctet+ Z Qiye—i t Z Oj€c;
i=1 j=1
©)

we say that {y.} is a mixed autoregressive moving average process of orders p and g,
respectively.

The autoregressive integrated moving average model is capable of representing a non-
stationary time series. An autoregressive integrated moving average model of order p, d, and
g, denoted by ARIMA(p,d,q) is given by

@ (LA = L)y, = 6,(L)e;
(4)

where p, d and q are integers greater than or equal to zero and refer to the order of the
autoregressive, integrated, and moving average parts of the model respectively, L is the
backward shift operator and the integer d controls the level of differencing. The backshift
operator is a notational device that shifts the data back into a specific number of periods. That
is, for the backshift notation L then L%y, = y,_4. In addition, ¢ ,(L) =1 - Y7, ¢; y,_; and

O,(L) =1+X7_, 6je_;.

When the data is affected by seasonality, a Seasonal ARIMA model
SARIMA(p,d,q)x(P,D,Q)s , where P, D, and Q are the order of the autoregressive,
differencing, and moving average for the seasonal component and S is the seasonal length. The
mathematical formulation of a SARIMA(p,d,q)x(P,D,Q)s model in terms of backshift notation
is given by

®p (L) (L) (1 = L) (1 = L)Py, = 0(L*)0, (L)€,
(5)

where ®,(L5) =1 — %I, @; L and 04(L) = 1+ X7, 6; L.
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The random walk process, ARIMA (0, 1, 0) is the simplest nonstationary model. The model is
given by

(I-Lyr =c+ e (6)

In a random walk model, the autocorrelation and partial autocorrelation of the first difference
of y, should not be significant. In other words, differencing of the original series eliminates all
serial dependence and yields a white noise process.

Table 1 shows the behavior of the autocorrelation and partial autocorrelation (ACF/PACF)
functions of an ARMA process (Montgomery, Jennings & Kulahci, 2008).

Table 1. ACF and PACF of ARMA Models
MA(q) AR(p) ARMA (p,q)

exponential decay exponential decay

ACF cuts off after lag g and/or damped and/or damped sinusoid
sinusoid
PACE exponential decay cuts off after lag p exponential decay

and/or damped sinusoid and/or damped sinusoid

The theoretical ACF and PACF of SARIMA Models may be used for identifying seasonal
components. The behavior of the ACF and PACF of SARIMA models are shown in Table 2
(Shumway & Stoffer, 2000).

Table 2. ACF and PACF of SARIMA Models

AR(P)s MA(Q)s ARMA (P,Q)s
ACF Tails off at lag ks, Cuts off after lag Qs Tails off at lag ks,
k=1,2,..., k=1,2,...,
PACF Cuts off after lag Ps Tails off at lag ks, k= Tails off at lag ks,
1,2,..., k=1,2,...,
METHOD

The data was obtained from the Department of Health (DOH) website, specifically, from the
agency’s Leptospirosis Surveillance Report. It is composed of weekly number of Leptospirosis
cases in the Philippines (1st week of January 2016 - 4th week of December 2018) where 130
data points (1st week of January 2016 — 4th week of June 2018) were used in model building
and 26 data points (1st week of July 2018 to 4th week of December 2018) for the forecast
evaluation. This dataset contains reported cases only. Considering the possibility of unreported
cases, actual leptospirosis incidences may be higher than the reported cases. This study is
limited to the analysis of reported cases and unreported cases were not included.
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According to Montgomery, Jennings and Kulahci (2008), the Box-Jenkins approach is
composed of three stages, namely, model identification, parameter estimation, and diagnostic
checking. An additional step on forecasting evaluation is also recommended and the entire
procedure is as follows:

1. Model Identification. In this stage, a time series plot shall be constructed. The plot will be
used as a tool for the preliminary assessment of stationarity. If non-stationarity is suspected
(i.e. there is a trend, seasonality and/or nonconstant variance), differencing and other
methods of transformation may be applied. A stationarity test may be performed in order
to formally check the stationarity of the series. Once the stationarity can be assumed, the
sample autocorrelation and partial autocorrelation functions (ACF/PACF) should be
obtained. Tentative models shall be identified based on ACF and PACF plots. The model
with the least Akaike’s Information Criterion value shall be selected.

2. Model Estimation. The parameters of the selected model shall be estimated. By default, R
uses a combination of conditional sum of squares and maximum likelihood in the
estimation process.

3. Diagnostic Checking. Residual analysis shall be conducted on the fitted model. The Ljung-
Box Test will be used to test if the model is a good to fit to the series. In the addition, ACF
and PACEF plots of the residuals shall be generated. The fitted model is inadequate if there
is a lack of fit, spikes on the ACF/PACF plots, and/or patterns in the residual plots. In such
cases, the researcher should go back to the model identification stage and identify a new
model.

4. Forecast Evaluation. The estimated model will be used to generate one-step ahead
forecasts of the out-sample dataset. This data refers to the observations that were not used
for model identification and estimation. Ideally, the forecast errors should behave like a
Gaussian white noise process. The ACF and PACF plots of the forecast errors shall be
generated. In addition, Shapiro Wilk test will be performed on these errors. If the forecast
errors are Gaussian white noise, there should be no spikes in the ACF and PACF plots.
Furthermore, the normality test should not yield a significant result.

This study made use of the following packages: forecast for model estimation and forecasting;
tseries for testing of stationarity; astsa for generating ACF and PACF plots; stats for the Ljung
Box Test; and Imtest for checking the parameter significance. All the packages are available in
the R software.

RESULTS

Figure 1 shows the time series plot of the weekly number of Leptospirosis cases in the
Philippines. The time series data is composed of 130 weekly observations from 1% week of
January 2016 to 4™ week of June 2018. Generally, the plot exhibits changing levels with no
apparent seasonality. In addition, the series seems to have a non-constant variance. That is, the
variability from the 1% week of January 2016 to 4™ week of June 2016 and 1% week of January
2017 to 4™ week of June 2017 appears to be smaller than the other weekly periods.
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Figure 1. Time Series Plot of Leptospirosis Incidence

In order to correct the problem of variability, the series was subjected to a Box Cox
transformation. An optimal lambda of -0.0834 was used in the said transformation. Figure 2
shows the time series plot of the transformed series. The transformed series seems to change
levels, an indication of non-stationarity.
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Figure 2. Time Series Plot of the Transformed Series

To formally test the stationarity of the series, the ADF test was used. Table 4 displays the ADF
test statistic and its p-value. Since the p-value is larger than the 0.05 level of significance, the
null hypothesis of non-stationarity cannot be rejected. The evidence is not enough to conclude
that the transformed series is stationary.

Table 3. ADF Test for Stationarity of the Transformed Series
ADF Test Statistic p-value

-2.4056 0.4079
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To make the series stationary, first order differencing was applied to the transformed series and
the resulting series is shown in Figure 3. It can be observed that the data points are generally
oscillating randomly around a constant mean. This behavior is consistent with the behavior of
a stationary series.
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Figure 3. Time Series Plot of the First Difference

To formally test the stationarity of the differenced series, the ADF test was performed. Table
4 displays the ADF test statistic and its p-value. Since the p-value is lower than 0.01, the null
hypothesis can be rejected. Hence, the first difference is stationary.

Table 4. ADF Test for Stationarity of the First Difference
ADF Test Statistic p-value

-4.6964 <0.01

The ACF and PACF plots of the first difference have no significant spikes. This is the behavior
of a white noise process. Since the resulting series is possibly white noise after first
differencing, the transformed series may be modelled using a random walk process. Thus,
ARIMA (0, 1, 0) or the random walk model is chosen for the transformed series.
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Figure 4. ACF and PACF of the First Difference

The random walk model or ARIMA (0, 1, 0) has no estimated autoregressive and moving
average parameters.

To check if there is another model with an AIC value lower than the chosen model, the process
of overfitting was performed. Table 5 shows the overfitted models and their corresponding AIC
values. There are two models with AIC values that are lower than the chosen model. These
models are ARIMA (0, 1, 1) and ARIMA (0, 1, 2).

Table 5. Overfitted Models

Model AIC
ARIMA (0, 1, 0) 79.38
ARIMA (1, 1, 0) 79.68
ARIMA (2,1, 0) 79.88
ARIMA (0, 1, 1) 79.07
ARIMA (0, 1, 2) 78.75

Table 6 shows the parameter estimates of ARIMA (0, 1, 2). The estimated MA(1) parameter
has a p-value of 0.0607 which is significant at a 0.10 level of significance. However, the
estimated MA(2) parameter has a large p-value of 0.1220, therefore this parameter is not
significant.

Table 6. Parameter Estimates of ARIMA (0, 1, 2) Model

Parameter Estimate S.E. z value p-value
MA(1) -0.1794 0.0956 -1.8760 0.0607
MA(2) -0.1508 0.0975 -1.5464 0.1220
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Table 7 shows the parameter estimate of ARIMA (0, 1, 1), its z value and p-value. The
estimated parameter is not significant with a large p-value of 0.1331. Both overfitted models
have nonsignificant parameters. Thus, the final model is ARIMA (0, 1, 0). The adequacy of the
chosen model was examined through a residual analysis.

Table 7. Parameter Estimates of ARIMA (0, 1, 1) Model
Parameter Estimate Standard Error z value p-value
MA(2) -0.1707 0.1137 -1.5021 0.1331

Figure 5 shows the residual plots of the chosen model. The plot of the residuals versus fitted
values exhibit random behavior. Thus, the residuals seem to have a constant variance. The same
random behavior can be observed when the residuals are plotted against time. This is an
indication of uncorrelated residuals. Lastly, the normal probability plot of residuals shows
severe deviations from normality. That is, some points are far from theoretical line.
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Figure 5. Residual Plots

Figure 6 shows the ACF and PACF plots of the residuals. The autocorrelations and partial
autocorrelations are within the maximum and minimum limits as represented by the blue
fragmented lines in the plots. Thus, individually, there are no significant autocorrelations and
partial autocorrelations among the residuals.
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Figure 6. ACF and PACF of the Residuals

To formally test the presence of a serial autocorrelation over several lags, the Ljung-Box Test
was performed. Table 8 shows the Ljung-Box test statistic with its degrees of freedom and p-
value. Since the p-value of 0.9032 is greater than 0.05, the null hypothesis of no serial
autocorrelation cannot be rejected. The statistical evidence does not support the existence of
autocorrelated residuals. Given the previous results, it is reasonable to conclude that the
residuals were generated by a white noise process.

Table 8. Ljung-Box Test for Residuals
Test Statistic Degrees of Freedom p-value
12.3590 20 0.9032
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Table 9 contains the actual data from the 1% week of July 2018 to 4" week of December 2018,
one-step ahead forecast values, and forecast errors. The model’s performance was evaluated
using these forecast errors.

Table 9. One-Step Ahead Forecast and Forecast Errors

Week Date Actual Forecast Forecast
Error
Week 27 July 01 - July 07, 2018 180 375 -195
Week 28 July 08 - July 14, 2018 151 180 -29
Week 29 July 15 - July 21, 2018 160 151 9
Week 30 July 22 - July 28, 2018 193 160 33
Week 31 July 29 - Aug. 04, 2018 385 193 192
Week 32 Aug. 05 - Aug. 11, 2018 310 385 -75
Week 33 Aug. 12 - Aug. 18, 2018 180 310 -130
Week 34 Aug. 19 - Aug. 25, 2018 295 180 115
Week 35 Aug. 26 - Sept 01, 2018 326 295 31
Week 36 Sept. 02 - Sept. 08, 2018 178 326 -148
Week 37 Sept. 09 - Sept. 15, 2018 120 178 -58
Week 38 Sept.16 - Sept. 22, 2018 139 120 19
Week 39 Sept. 23 - Sept. 29, 2018 178 139 39
Week 40 Sept. 30 - Oct. 06, 2018 174 178 -4
Week 41 Oct. 07 - Oct. 13, 2018 102 174 -72
Week 42 Oct. 14 - Oct. 20, 2018 127 102 25
Week 43 Oct. 21 - Oct. 27, 2018 67 127 -60
Week 44 Oct. 28 - Nov. 03, 2018 58 67 -9
Week 45 Nov. 04 - Nov. 10, 2018 59 58 1
Week 46 Nov. 11 - Nov. 17, 2018 45 59 -14
Week 47 Nov. 18 - Nov. 24, 2018 42 45 -3
Week 48 Nov. 25 - Dec. 01, 2018 38 42 -4
Week 49 Dec. 02 — Dec. 08, 2018 42 38 4
Week 50 Dec. 09 — Dec. 15, 2018 31 42 -11
Week 51 Dec. 16 — Dec. 22, 2018 23 31 -8
Week 52 Dec. 23 — Dec. 31, 2018 16 23 -7

Figure 7 displays the ACF and PACF plots of the forecast errors. Most of the autocorrelations
and partial autocorrelations are not significant. However, in both plots there is a small spike at
lag 2. This is still an indication of uncorrelated residuals.
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Figure 7. ACF and PACF Plots of the Forecast Errors

Table 10 shows the results of the Shapiro-Wilk test. Since the p-value of 0.0058 is lower than
0.05, the forecast errors are not normally distributed. Finally, given the previous results, the
residuals behave like a white noise process.

Table 10. Shapiro-Wilk Test of Normality
Test Statistic p-value
0.8803 0.0058

Table 11 shows the forecasted values for the 1% week of January 2019 to the 4" week of June
2019. The 95% confidence limits are also shown in the table.
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Table 11. Forecasted Values

95% Confidence Limit

Week Date Forecast

Lower Upper
Week 1 Jan. 01 - Jan. 05, 2019 16 7.3292 36.8818
Week 2 Jan. 06 - Jan. 12, 2019 16 5.3807 53.0608
Week 3 Jan. 13 - Jan. 19, 2019 16 4.2672 70.6834
Week 4 Jan. 20 - Jan, 26, 2019 16 3.5216 90.5062
Week 5 Jan. 27 - Feb. 02, 2019 16 2.9809 113.0148
Week 6 Feb. 03 - Feb. 09, 2019 16 2.5690 138.6450
Week 7 Feb. 10 - Feb. 16, 2019 16 2.2442 167.8393
Week 8 Feb. 17 - Feb. 23, 2019 16 1.9816 201.0692
Week 9 Feb. 24 - Mar. 02, 2019 16 1.7651 238.8480
Week 10 Mar. 03 - Mar. 09, 2019 16 1.5837 281.7402
Week 11 Mar. 10 - Mar. 16, 2019 16 1.4298 330.3696
Week 12 Mar. 17 - Mar, 23 2019 16 1.2978 385.4275
Week 13 Mar. 24 - Mar. 30, 2019 16 1.1835 447.6807
Week 14 Mar. 31 - Apr. 06, 2019 16 1.0838 517.9810
Week 15 Apr. 07 - Apr. 13, 2019 16 0.9961 597.2746
Week 16 Apr. 14 - Apr. 20, 2019 16 0.9186 686.6128
Week 17 Apr. 21 - Apr. 27, 2019 16 0.8497 787.1640
Week 18 Apr. 28 - May 04, 2019 16 0.7881 900.2267
Week 19 May 05 - May 11, 2019 16 0.7328 1027.2443
Week 20 May 12 - May 18, 2019 16 0.6830 1169.8209
Week 21 May 19 - May 25, 2019 16 0.6379 1329.7394
Week 22 May 26 - Jun. 01, 2019 16 0.5970 1508.9814
Week 23 Jun. 02 - Jun. 08, 2019 16 0.5597 1709.7495
Week 24 Jun. 09 - Jun. 15, 2019 16 0.5257 1934.4918
Week 25 Jun. 16 - Jun. 22, 2019 16 0.4950 2185.9297
Week 26 Jun. 23 - Jun. 29, 2019 16 0.4659 2467.0881

CONCLUSION

The weekly incidence of leptospirosis from the 15t week of January 2016 to the 4" week of
June 2018 showed changing levels with no clear seasonality. The series exhibits a non-constant
variance. The random walk model or ARIMA (0, 1, 0) is the chosen model for Leptospirosis
incidence. The model is given by

(1-B)y; = €

where
y;= the series after Box Cox transformation

Overfitting was performed on ARIMA (0, 1, 0). However, the other models with lower AIC
values have nonsignificant parameters. Thus, ARIMA (0, 1,0) is the final model.
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Based on the ACF and PACF plots, the autocorrelation and partial autocorrelation values of
the residuals are within acceptable limits. The plot of residuals versus fitted values and
residuals versus time are structureless. In addition, some of the residuals are far from the
theoretical line of normality. Finally, the result of the Ljung-Box test does not support the
existence of autocorrelated residuals. Thus, the residuals are generated by a white noise
process.

The autocorrelation and partial autocorrelation values of the forecast errors are significant at
lag 2. Still, most of the ACF and PACF values are not significant. The result of the Shapiro-
wilk test is significant. Hence, the forecast errors generally behave like a white noise process.

The forecasted values for the 1%t week of January 2019 to the 4" week of June 2019 is 16 cases.
This forecast should be updated whenever new data becomes available.
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